

Manufacture: NAKAKIN CO.,LTD. PUMP DIVISION

2-10-5 Kasuga Kitamachi Hirakata Osaka 573-0137 Japan E-mail:pumpinfo@nakakin.co.jp www.nakakinpump.jp/e

Rrinted:September 28. 2015 The contents of publishing may be changed without prior notice.

 $(\bigcirc$

 $\langle \bigcirc \rangle$

 \bigcirc

 $\langle \bigcirc \rangle$

 $\langle \bigcirc \rangle$

 $\langle \bigcirc \rangle$

No.1 in Japan

With built in safety mechanism, Nakakin pumps offer excellent discharge capacity, suction and consistent volume flow not found in non-contact structure pumps.

0

Purées & Sauces

Confectionery

Beverages

Bakery

Meat Products

Nakamura Metal No.3 is a unique product that we developed using our advanced molding technology. It is a specil alloy that has minimum expansion even under high temperatures.

Raw Material

pump parts.

Nakakin inspects every single pump for accuracy, and finish up in high-load operation testing to ensure safety.

Nakamura Metal No. 3

Nakakin's production starts with excellent engineers and artisans melting and pouring metal into molds to make raw parts. Nakakin manufactures the major

Machining Accuracy and Assembly Precision

Product Lineup

Big Pump

Pump

with Flange Connection

(6s 1470L/min)

Mini Pump

Pump Unit

Jacket (Casing & Cover)

Customized Color

Unit with Variable Speed Changer

Vented Cover

Buffing (Buff Finish)

Unit with SUS Cover

Only Nakakin's consistent one-step production provides all customer needs.

Continuously producing pumps best meeting customer needs, Nakakin's outstanding technology is widely recognized both in Japan and overseas.

As this production system is flexible, please consult us about your particular needs and special requirements.

JM/JO

These models use inner seals , JM for mechanical sealing and JO for O-ring sealing. Simple structures making dismantling and reassembly easy and providing a long effective life with high performance make these models the most popular.

These models use outer mechanical sealing. Their simple structure makes dismantling and reassembly easy. Clients can select from single, quench, and tandem mechanisms. Designed to handle a wide variety of liquids, these models work especially well with corrosive and fiber-containing liquids.

Supported by high quality and high performance, each of Nakakin's four pump types is unique.

A casting foundry combining Japan's technologies and excellence in the art of design and production with our own casting foundry. Nakakin produces high quality and high Our wide range of approaches to sealing includes using inside

performance rotary piston pumps.

and outside mechanical seals to meet individual applications. Nakakin pumps are easy to clean, easy to dismantle, and easy to reassemble.

SC

The SC type is specifically designed for cleaning and washing ease. Using a flat cover and eliminating bosses allows these pumps to provide effective washing and cleaning while leaving less liquid residue. The simple structure makes dismantling and reassembly easy.

06

AMXN

Designed for completely aseptic liquid distribution, these pumps isolate liquids completely from the atmosphere to ensure aseptic conditions. Distributing mediums such as sterilized water and steam, these models are suited to aseptic production lines of products requiring long-term preservation such as dairy products and medications.

JM/JO

INSIDE MECHANICAL SEAL TYPE / O-RING SEAL TYPE

Features and Benefits

Smallest Clearance

Special alloy "Nakamura Metal No.3" can make the smallest clearance between rotors and casing.

- Convey a constant volume of liquid.
- Self-priming
- Distribution of all levels of viscosity

High Degree of Cleanability

Incredibly easy assembly /disassembly. Completely cleaned and sterilized with CIP & SIP processes. Standard: 95°C, High Temperature: 150°C

Inside Seal

Precision Pump - High rigidity is reached by shortest distance between bearing and rotor.

Specifications

Size	Connection	Flow Rate
2	1s	8L/min
4	1s	20L/min
10	1.5s	40L/min
16	1.5s	60L/min
25	1.5s	1001 /min
25	3s×2s	TOOL/MIN
40	2s	1051 /min
40	3s×2s	135L/min
55	2s	0701 /min
55	3s×2s	270L/MIN
105	2.5s	4401 /min
125	3s	410L/min
160	4s	710L/min
200	4s	930L/min
300	65	14701 /min

Mechanical Seal type

High durability and suitable for a wide variety of liquids

O-ring Seal type

Easy to dismantle and reassemble after cleaning

- Maximum Discharge Pressure 1.0 MPa=10 bar (For details see Condification Chart,P33,34)
- Vertical and Horizontal
- Double and Single Blade Rotors
- Interchangeable with RM/RO series

OUTSIDE MECHANICAL SEAL TYPE

Smallest Clearance

Special alloy "Nakamura Metal No.3" can make the smallest clearance between rotors and casing.

- Convey a constant volume of liquid.
- Self-priming
- Distribution of all levels of viscosity

High Degree of Cleanability

Incredibly easy assembly /disassembly. Completely cleaned and sterilized with CIP & SIP processes. Standard: 95°C, High Temperature: 150°C

Outside Seal

High Cleanability - A few parts in a wet area can be dismantled and reassembled easily.

Specifications

Size	Connection	Flow Rate
2	1s	8L/min
4	1s	20L/min
10	1.5s	40L/min
16	1.5s	60L/min
25	1.5s	100L/min
40	2s	135L/min
55	2s	270L/min
125	2.5s	410L/min
160	4s	710L/min
200	4s	930L/min
300	6s	1470L/min

Single Mechanical Seal type

Standard.

Quench Seal type

Quenching Seal by Oil Seal. Moderate price compared to Tamdem. (0.03 MPa=0.3 bar)

Tamdem Seal type

Quenching Seal by Mechanical Seal. Steam is available. (0.25 MPa=2.5 bar)

Maximum Discharge Pressure 1.0 MPa=10 bar (For details see Condification Chart,P33,34)

- Vertical and Horizontal
- Double and Single Blade Rotors

Construction Diagram

SUPER CLEAN TYPE

Features and Benefits

Smallest Clearance

Special alloy "Nakamura Metal No.3" can make the smallest clearance between rotors and casing.

- Convey a constant volume of liquid.
- Self-priming
- Distribution of all levels of viscosity

Highest Degree of Cleanability

• Limited number of spaces within the pump for liquids to pool results in easy cleaning.

• Placed vertically with a CIP mechanism, this pump eliminates every last drop of liquid from the interior of the pump.

Incredibly easy assembly /disassembly. Completely cleaned and sterilized with CIP & SIP processes.
 Standard: 95°C, High Temperature: 150°C

Maximum Discharge Pressure 1.0 MPa=10 bar (For details see Condification Chart,P33,34)

Specifications

Size	Connection	Flow Rate
15	1.5s	70L/min
30	2s	125L/min
60	2s	240L/min
130	3s	480L/min

Special Features for SC

• Fixed Shaft Rotor $\cdot \cdot \cdot$ Disassembly / assembly is now a simple process. Because the shaft is fixed to the rotor, the rotor can be easily and accurately installed.

• Flat Head Rotor & Cover · · · The head of the rotor and the cover is flat. This dramatically minimises the spaces in which liquid pooling may occur.

• Super Clean Mechanical Seal • • • The mechanical seal is simple and compact in design. There are no O-ring grooves, which may trap liquids and this contributes to easy cleaning.

• Loosening the nut at the rear of the rotor unitized with the shaft enables easy disassembly, making it convenient for maintenance such as replacing mechanical seals.

- Vertical and Horizontal
- Double and Single Blade Rotors

A MARK ASEPTIC

Features and Benefits

Smallest Clearance

Special alloy "Nakamura Metal No.3" can make the smallest clearance between rotors and casing.

- Convey a constant volume of liquid.
- Self-priming
- Distribution of all levels of viscosity

High Degree of Cleanability

Incredibly easy assembly /disassembly. Completely cleaned and sterilized with CIP & SIP processes. Standard: 95°C, High Temperature: 150°C

Special Features for AMXN

• The aseptic rotary pumps completely isolate the products from the atmosphere to maintain the products free from germs.

• Double layered Seal + Steam Barrier

The seal mechanism in the pump is double-layered with a steam barrier on the interior of the two steam pathways inside the pump. This prevents any contamination of the pump interior by airborne bacteria or the like.

Medium solution: Sterile water and steam

Specifications

Size	Connection	Flow Rate
2400	1.5s	41L/min
3400	1.5s	57L/min
7000	2s	110L/min
10000	2s	176L/min
14000	2s	270L/min
24000	3s	430L/min

CIP JET

Halls and Channels in casing and cover allow self-cleaning without disassembly, creating a very efficient cleaning process.(P36)

- Maximum Discharge Pressure 0.7 MPa=7 bar (For details see Condification Chart,P33,34)
- Vertical and Horizontal
- Double and Single Blade Rotors

JM/JO Structural Drawing

JMU Structural Drawing

Exploded view of components in contact with liquids

No.	Parts	No.	Parts
3	Casing	20	Hexagon cap nut
4	Casing cover	43	Cap bolt
5	Rotor	50	Nut O-ring
12	Cap nut	51	Rotor O-ring
13	Spring washer	52	Cover O-ring

JM

Mechanical Seal Structure

No.	Mechanical Seal
48-1	Mating ring O-ring
48-2	Mating ring
48-3	Primary ring O-ring
48-4	Primary ring
48-5	Coil spring
48-6	Spring holder

JO

O-ring Seal Structure

NO.	O-Ing Seal
44	O-ring seal collar
45	Sleeve
53	Sleeve O-ring
54	Casing O-ring
55	Collar O-ring
60	Rotor

Exploded view of components in contact with liquids

No.	Parts	No.	Parts
3	Casing	20	Hexagon cap nut
4	Casing cover	43	Cap bolt
5	Rotor	50	Nut O-ring
12	Cap nut	51	Rotor O-ring
13	Spring washer	52	Cover O-ring

No.	Mechanical Seal Parts on Pump Side
48-1	Mating ring O-ring
48-2	Mating ring
48-3	Primary ring O-ring
48-4	Primary ring
48-5	Wave spring

h Seal Parts ospheric Side	No.	Mechanical Seal Parts on Atmospheric Side
lt	48-6	Mating ring O-ring
retainer	48-7	Mating ring
r O-ring	48-8	Primary ring O-ring
sleeve	48-9	Primary ring
O-ring	48-10	Wave spring
	48-11	Cap bolt

Structural Drawing

Exploded view of components in contact with liquids

No.	Parts	No.	Parts
3	Casing	43	Cap bolt
4	Casing cover	50	Washer
5	Rotor	51	Spring washer
12	Nut	52	Cover O-ring
20	Hexagon cap nut		

Parts	No.	Parts
Casing	33	Rotor O-ring
Casing cover	35	Cover O-ring(in)
Rotor	36	Cover O-ring(out)
Cap nut	42	Hexagon cap nut
Nut O-ring	43	Cap bolt
	Parts Casing Casing cover Rotor Cap nut Nut O-ring	PartsNo.Casing33Casing cover35Rotor36Cap nut42Nut O-ring43

Structure in contact with liquids and structure of mechanical seal

Mechanical Seal Structure

No.	Mechanical Seal
48-1	Mating ring O-ring
48-2	Mating ring
48-3	Primary ring O-ring
48-4	Primary ring
48-5	Wave spring
69	Mechanical seal retainer
70	Flathead screw for retainer

Exploded view of components in contact with liquids

No.	Mechanical Seal Parts on Pump Side
46-1	Mating ring O-ring
46-2	Mating ring
48-3	Primary ring O-ring
46-4	Primary ring
46-5	Coil spring
46-11	Spring holder
No.	Mechanical Seal Parts on Atmospheric Side
46-6	Mating ring O-ring
46-7	Mating ring
46-8	Primary ring O-ring
46-9	Primary ring
46-10	Wave spring

JM/JO/JMU 55

PORT SIZE: 2" / PRODUCT: Water & Newtonian fluid

L/H L/M

100 200 300 400 500 600 700 800 rpm

*Actual performance may vary by application or product. *Refer to page 20 for the interpretation of the chart.

20

Performance Curve

JM/JO/JMU 160 PORT SIZE:4" / PRODUCT:Water & Newtonian fluid

JM/JO/JMU 300

PORT SIZE:6" / PRODUCT:Water & Newtonian fluid

SC 30

PORT SIZE: 2" / PRODUCT: Water & Newtonian fluid

*Actual performance may vary by application or product. *Refer to page 20 for the interpretation of the chart.

Performance Curve

How to Use the Performance Curve

Under the following conditions: Flow rate: 30 L/min, discharge pressure: 0.6 MPa and viscosity: 10 CPS

1.Come straight down (in the direction of \downarrow) from ① on "ALL VISCOSITIES CPS" in the upper right corner. 2.When reaching the 0.6 MPa line 2, move to direction of \leftarrow .

3. When reaching the rightmost grid of the diagram, draw line 3 in parallel with it.

4.From the intersection of 30 L/min line ④ and line ③, come straight down (in the direction of ↓) to draw line ⑤ and obtain the rotational speed of 270 rpm.

5.From the intersection of 30 L/min line ④ and the 0.6MPa power line, go up straight in the direction of 1 to draw line ⑥ and obtain the power (1.2 kW).

Dimensional Drawing

1	уре	JO	JM (O)	JM						
Ν	/lark	4	10	16	25	40	55	125	160 · 200	300
	Α	238	323	323	336	355	407	437	566	853
	В	195	249	246	263	276	322.5	345	440.5	695
	С	34	62	60	58	58	63	63	75	110
	D	30	50	50	50	50	54	54	70	100
	E	23	15	15	18	18	30	30	25	85
	F	75	80	80	99	99	115	115	198	265
	G	95	108	108	129	129	155	155	238	335
	Н	183	218	218	237	237	295	295	388	617
	I	100	140	140	175	175	243	243	314	400
	J	18	22	22	26	26	36	36	55	70
v	Width	6	6	6	8	8	10	10	16	22
N	Depth	3.5	3.5	3.5	4	4	5	5	6	9
	L	76	107.5	107.5	133	133	185.5	185.5	237	307.5
	М	161	237	237	282	282	380	380	506	667
	Ν	167	180	180	217	217	270	270	380	500
	0	83.5	90	90	108.5	108.5	135	135	190	250
	Ρ	132	150	150	174	174	230	230	280	370
	Ø	154	174	174	198	198	260	260	320	420
	R	9	11	11	11	11	14	14	18	23
	S	48	65	65	84	84	115	115	154	185
	Т	19	24	30	36	47	47	60	96	150
	U	1s	1.5s	1.5s	1.5s	2s	2s	2.5s	4s	6s
	۷	52	75	75	91	91	128	128	160	215
	W	85	123	123	120	120	150	150	165	267
	Z	11	18	18	20	20	23	23	23	30
W	eight	15kg	27.5kg	28kg	42kg	45kg	85.7kg	94.4kg	140kg	420kg

	Туре	VJO	VJM (O)	VJM (O)	VJM (O)	VJM (O)	$\text{VJM}\left(\mathbf{O}\right)$	VJM (O)	VJM (O)	VJM
	Mark	4	10	16	25	40	55	125	160 · 200	300
	Α	238	323	323	336	355	407	437	566	872
	В	195	249	246	263	276	322.5	345	440.5	702
	С	34	62	62	58	58	63	63	75	110
	D	30	50	50	50	50	54	54	70	100
	E	10	15	15	15	15	20	20	20	35
	F	58	60	60	75	75	125	125	153	235
	G	78	90	90	105	105	165	165	193	305
	Н	153	199	199	210	210	295	295	338	502
	I.	100	113	113	140	140	150	150	200	300
	J	18	22	22	26	26	36	36	55	70
ĸ	Width	6	6	6	8	8	10	10	16	22
	Depth	3.5	3.5	3.5	4	4	5	5	6	9
	М	175	220	220	252	252	291	291	380	516
	Ν	167	203	203	248.5	248.5	285	285	390	550
	0	83.5	90	90	108.5	108.5	135	135	190	250
	Р	132	170	170	196	196	280	280	360	400
	Q	154	196	196	220	220	310	310	400	470
	R	9	11	11	11	11	17	17	19	23
	S	48	65	65	84	84	115	115	154	185
	Т	19	24	30	36	46	46	60	96	150
	U	1s	1.5s	1.5s	1.5s	2s	2s	2.5s	4s	6s
	V	16.5	23	23	31.5	31.5	15	15	10	50
	W	85	124	124	120	120	150	150	165	267
	Z	12	18	18	20	20	23	23	23	30
۷	Veight	16.0kg	28.6kg	29.2kg	44.3kg	47.2kg	89.8kg	98.2kg	160kg	450kg

VJM/VJO Series

*Size and weight may be changed without prior notice.

Dimensional Drawing

٦	Гуре	K	К	KZ	KZ	KZ	К	K	К
Ν	Nark	J10	J16	J25	J40	J55	J125	J160	J200
	Α	323	323	336	355	407	437	566	566
B C		249	246	263	276	322.5	345	440.5	440.5
		62	60	48	58	63	63	75	75
	D	50	50	50	50	54	54	70	70
	E	15	15	18	18	30	30	25	25
	F	80	80	99	99	115	115	198	198
	G	108	108	129	129	155	155	238	238
	н	218	218	237	237	295	295	388	388
	-	140	140	175	175	243	243	314	314
	J	22	22	26	26	36	36	55	55
v	Width	6	6	8	8	10	10	16	16
ĸ	Depth	3.5	3.5	4	4	5	5	6	6
	L	107.5	107.5	133	133	185.5	185.5	237	237
	М	237	237	282	282	380	380	506	506
	N	140	140	200	200	275	238	325	325
	01	90	90	110	110	135	135	190	190
	02	50	50	90	90	140	103	135	135
	Р	150	150	174	174	230	230	280	280
	Q	174	174	198	198	260	260	320	320
	R	11	11	11	11	14	14	18	18
	Т	24	30	36	47	47	60	96	96
	U	1.5s	1.5s	2s	2s	2s	3s	4s	4s
	W	123	123	120	120	150	150	165	165
	Z	18	18	20	20	23	23	23	23
Inci	sion part								
	CA	13	24	28	45	40	50	42	62
	CB	28	16	10	12	12.5	25	48	28
	CC	130	130	150	150	145	155	184	184
	CD	6.5	6.5	15	15	15	9	18	18
	FA	46	46	48	67	65	85	105	105
	FB	143	143	180	180	175	173	220	220
	PA	16	26	27	42	43	52	51.5	71.5
	PB	90	90	120	120	110	115	137	137
	PC	26	16	13	17	11	23	45	25
	PD	26.5	26.5	30	30	32.5	29	41.5	41.5
	HA	M6	M6	M10	M10	M12	M10	M12	M12
Flange p	art seal system	Plate packing	Plate packing	O-ring	O-ring	O-ring	Plate packing	Plate packing	Plate packing

Т	уре	К	K	KZ	KZ	KZ	K	K	K
N	/lark	VJ10	VJ16	VJ25	VJ40	VJ55	VJ125	VJ160	VJ200
	Α	323	323	336	355	437	437	556	556
	В	249	246	263	276	322.5	345	440.5	440.5
	С	62	62	58	58	63	63	75	75
	D	50	50	50	50	54	54	70	70
	E	15	15	15	15	20	20	20	20
	F	60	60	75	75	125	125	153	153
	G	90	90	105	105	165	165	193	193
	н	199	199	210	210	295	295	338	338
	1	113	113	140	140	150	150	200	200
	J	22	22	26	26	36	36	55	55
ĸ	Width	6	6	8	8	10	10	16	16
ĸ	Depth	3.5	3.5	4	4	5	5	6	6
	M	220	220	252	252	291	291	364	364
	Ν	163	163	230	230	290	254	335	335
	01	90	90	110	110	135	135	190	190
	02	50	50	90	90	140	103	135	135
	Р	170	170	196	196	280	280	360	360
	Q	196	196	220	220	310	310	400	400
	R	11	11	11	11	17	17	19	19
	Т	24	30	36	46	46	46	96	96
	U	1.5s	1.5s	2s	2s	2s	3s	4s	4s
	V	23	23	30	30	15	15	10	10
	W	124	124	120	120	150	150	165	165
	Z	18	18	20	20	23	23	23	23
Incis	sion part								
	CA	13	24	28	45	40	50	42	62
	CB	28	16	10	12	12.5	25	28	28
	CC	130	130	150	150	145	155	184	184
	CD	6.5	6.5	15	15	15	9	18	18
	FA	46	46	48	67	65	85	105	105
	FB	143	143	180	180	175	173	220	220
	PA	16	26	27	42	43	52	51.5	71.5
	PB	90	90	120	120	110	115	137	137
	PC	26	16	13	17	11	23	45	25
	PD	26.5	26.5	30	30	30	29	41.5	41.5
	HA	M6	M6	M10	M10	M12	M10	M12	M12
Flange pa	art seal system	Plate packing	Plate packing	O-ring	O-ring	O-ring	Plate packing	Plate packing	Plate packing

 $\% {\rm Size}$ and weight may be changed without prior notice.

JMU **Dimensional Drawing**

Туре	JMU	JMU							
Mark	4	10	16	25	40	55	125	160.200	300
Α	254.5	328	328	362	372	432	458	613	853
В	207	271	266	287	291	347.5	364	464	695
С	34	62	60	58	58	63	63	75	110
D	30	50	50	50	50	54	54	70	100
E	23	15	15	18	18	30	30	25	85
F	75	80	80	99	99	115	115	198	265
G	95	108	108	129	129	155	155	238	335
Н	183	218	218	237	237	295	295	388	617
1	100	140	140	175	175	243	243	314	400
J	18	22	22	26	26	36	36	55	70
Width	6	6	6	8	8	10	10	16	22
Depth	3.5	3.5	3.5	4	4	5	5	6	9
L	76	107.5	107.5	133	133	185.5	185.5	237	307.5
М	161	237	237	282	282	380	380	506	667
Ν	167	180	180	217	217	270	270	380	500
0	83.5	90	90	108.5	108.5	135	135	190	250
Р	132	150	150	174	174	230	230	280	370
Q	154	174	174	198	198	260	260	320	420
R	9	11	11	11	11	14	14	18	23
S	48	65	65	84	84	115	115	154	185
Т	19	24	24	36	47	47	60	96	150
U	1s	1.5s	1.5s	1.5s	2s	2s	2.5s	4s	6s
۷	2	75	75	91	91	128	128	160	215
W	85	123	123	120	120	150	150	165	267
Z	11	18	18	20	20	23	23	23	30

	Туре	VJMU	VJMU	VJMU	VJMU	VJMU	VJMU	VJMU	VJMU	VJMU
	Mark	4	10	16	25	40	55	125	160.200	300
	Α	254.5	328	328	362	372	432	458	592	872
	В	207	271	266	287	291	347.5	364	464	702
	С	34	62	62	58	58	63	63	75	110
	D	30	50	50	50	50	54	54	70	100
	E	10	15	15	15	15	20	20	20	35
	F	58	60	60	75	75	125	125	153	235
	G	78	90	90	105	105	165	165	193	305
	н	153	199	199	210	210	295	295	338	502
	-	100	113	113	140	140	150	150	200	300
	L	18	22	22	26	26	36	36	55	70
ĸ	Width	6	6	6	8	8	10	10	16	22
K	Depth	3.5	3.5	3.5	4	4	5	5	6	9
	М	175	220	220	252	252	291	291	380	516
	Ν	183.5	203	203	248.5	248.5	285	285	390	550
	0	83.5	90	90	108.5	108.5	135	135	190	250
	Р	132	170	170	196	196	280	280	360	400
	Ø	154	196	196	220	220	310	310	400	470
	R	9	11	11	11	11	17	17	19	23
	S	24	32.5	32.5	42	42	57.5	57.5	77	92.5
	Т	19	24	30	36	46	46	60	96	150
	U	1s	1.5s	1.5s	1.5s	2s	2s	1.5s	4s	6s
	۷	16.5	23	23	31.5	31.5	15	15	10	50
	W	85	124	124	120	120	150	150	165	267
_	Z	12	18	18	20	20	23	23	23	30

Dimensional Drawing

Dimensional Drawing

SC Series

Type Mark	SC15	SC30	SC60	SC130
Α	377.5	477.5	547.5	577.5
В	324	380	470	485
С	55	56	65	65
D	50	50	60	60
E	14	15	20	20
F	80	99	115	115
G	108	129	155	155
н	49	60	80	80
1	205	259	358	358
J	22	34	45	45
Vidth	6	10	12	12
epth	3.5	5	5	5
L	107.5	133	185	185.5
м	276.5	340	459	459
N	180	217	270	270
0	90	108.5	135	135
Р	150	174	230	230
Q	174	198	260	260
R	11	11	14	14
S	65	84	115	115
Т	30	47	47	72
U	1.5s	2s	2s	3s
v	75	91	128	128
W	195	221	275	275
Z	18	20	23	23

VSC130 577.5

	Type Mark	VSC15	VSC30	VSC60	Í
	Α	377.5	477.5	547.5	ĺ
	В	324	380	470	ĺ
	С	55	56	65	ĺ
	D	50	50	60	ĺ
	E	15	15	20	ĺ
	F	60	75	125	ĺ
	G	90	105	165	ĺ
	н	67	84	70	ĺ
	I	113	140	150	l
_ <u>U_</u>	J	22	34	45	l
. S	K Width	6	10	12	ĺ
	Depth	3.5	5	5	Ĺ
	L. L.	254.5	296	407.5	ĺ
	м	219.5	251.5	300	ĺ
	N	180	217	270	ĺ
╶┦─╶╬┄╾┼┝╎╾┼╾╌┥╌╴ᢓ ╶╴╢╌┤╷┽╌┼╎╾╌╌╸┤╌╌╢╗╢╞╧╤╌┼┰	0	90	108.5	135	ĺ
	P	170	196	280	ĺ
	Q	196	220	310	ĺ
╷ ┎╱╵╧┿┙╰╌╷┈╢╷ ╀┸┼╘┿┥┟╌╶╌╷ ── └┇╻╷	R	11	11	14	l
	S	97.5	126	172.5	ĺ
$ = \frac{r}{2} = \frac{4 - \varphi R}{2} \frac{E}{2} = \frac{E}{2} = \frac{E}{2}$	т	30	47	47	l
	U	1.5s	2s	2s	Ĺ

G

VSC Series

v W

 31.5

ri	es					
e rk	2400	3400	7000	10000	14000	24000
	361.5	361.5	420	477	535	535
	301	293	341	382	443	440
	48	48	58	65	65	65
	48	48	50	62	60	60
	18	18	20	20	25	25
	90	90	104	130	160	160
	126	126	144	170	210	210
	236	236	277	312	353	353
	146	146	185	220	265	265
	24	24	35	38	42	42
dth	8	8	8	10	12	12
pth	4	4	4	5	5	5
	113.5	113.5	140	169.7	202.5	202.5
	225	225	323	366	436	436
	210	210	240	260	304	304
	105	105	120	130	152	152
	160	160	184	210	260	260
	190	190	214	240	300	300
	11	11	12	13	18	18
	65	65	90	100.6	125	125
	22	34	47	47	47	73
	1.5s	1.5s	2s	2s	2s	3s
	81	81	95	119.4	140	140
	128	128	153	166	168	168
	22	22	25	25	25	25

e r	eries												
					-								
e k	2400	3400	7000	10000	14000	24000							
	361.5	361.5	420	477	535	553							
	301	293	341	382	443	450							
	48	48	58	65	65	65							
	48	48	50	62	60	60							
	15	15	21	22	25	25							
	90	90	100	106	135	160							
	120	120	142	150	185	185							
	233	233	271	303	341	341							
	130	130	140	160	180	180							
	24	24	35	38	42	42							
lth	8	8	8	10	12	12							
pth	4	4	4	5	5	5							
	243	243	278	307	351	351							
	210	210	240	260	304	304							
	105	105	120	130	152	152							
	180	180	225	220	260	260							
	206	206	214	256	300	300							
	11	11	13	14	18	18							
	65	65	90	100.6	125	125							
	22	34	47	47	47	73							
	1.5s	1.5s	2s	2s	2s	3s							
	25	25	20	30	140	140							
	128	128	150	175	181	181							
	18	18	25	25	25	25							

Codification Chart

1Kind of Option

	option	
Mark	Adaptation model	Contents
Α	AMXN	Aseptic type
В	JM/O · JMU	Vented-Cover (Relief Valve)
С	All models	CIP JET Pump type
CW	All models	For transport cold cream. Churning prevention type
D	All models	Single Blade Rotor
F	All models	Flushing Type
G	All models	Jacket (Casing / Casing Cover)
HP	All models	High Pressure Pump (Max. 1.5 MPa)
HT	All models	High Temperature Pump (Max. 150 ℃)
К	Inquiry required	Rectangular Port
KZ	Inquiry required	Rectangular Port with Slit for O-ring
N	All models	Smaller Clearance
Q	JMU	Quenching
S	All models	Vacuum Type
т	All models	Titanium Pump
v	All models	Vertical Type
w	JO · JMU · SC	Double O-ring Seal,Tandem Mechanical Seal Type

2Pump Model

JM	Inside mechanical seal type
JO	O-Ring seal type
JMU	Outside mechanical seal type ※Quenching, also tandem possible
SC	Super clean type
AMXN	Aseptic type

③Pump Size: JM/JO/JMU

Size	Port	Max Speed (rpm)	Max Capacity (L/min)	Displacement (L/rev)	Max.Pressure (Standard Pump) (MPa)	Max.Pressure ("HP"Pump) (MPa)
2	1s	800	8	0.010	0.5	N/A
4	1s	800	20	0.025	0.7	N/A
10	1.5s	800	40	0.050	1.0	1.5
16	1.5s	600	60	0.100	1.0	1.5
25	1.5s	450	100	0.220	1.0	1.5
40	2s	450	135	0 300	1.0	15
40	3s×2s∗	450	155	0.300	1.0	1.5
55	2s	450	270	0.600	1.0	15
	3s×2s≋	450	210	0.000	1.0	1.5
105	2.5s	450	410	0.020	10	1.5
125	3s∗	450	410	0.920	1.0	1.5
160	4s	450	710	1.580	1.0	1.5
200	4	450	930	2.060	1.0	1.5
300	6	450	1470	3.270	1.5	N/A

%JM/JO Series Only

3Pump Size : SC

Size	Port	Max Speed (rpm)	Max Capacity (L/min)	Displacement (L/rev)	Max.Pressure (Standard Pump) (MPa)
15	1.5s	700	70	0.100	1.0
30	2s	450	125	0.277	1.0
60	2s	450	240	0.533	1.0
130	3s	450	480	1.066	1.0

3Pump Size : AMXN

Size	Port	Max Speed (rpm)	Max Capacity (L/min)	Displacement (L/rev)	Max.Pressure (Standard Pump) (MPa)
2400	1.5s	800	41	0.050	0.7
3400	1.5s	600	57	0.095	0.7
7000	2s	450	110	0.240	0.7
10000	2s	450	176	0.390	0.7
14000	2s	450	270	0.600	0.7
24000	3s	450	430	0.955	0.7

(4) Material of Mechanical Seal

Mark	Adaptation model	Contents
No Mark	JM · JMU	Carbon&Ceramic
т	$JM \cdot JMU \cdot SC \cdot AMXN$	Tungsten Carbide & Tungsten Carbide
Т2	JM · JMU	Tungsten Carbide & Tungsten Carbide for Liquid Sugar
Т3	JM	Tungsten Carbide & Tungsten Carbide for Vacuum condition
Τ4	JM	Tungsten Carbide & Tungsten Carbide for Liquid Sugar vacuum condition
SS	JM · JMU · SC	Silicon Carbide & Silicon Carbide
SNT	JM · JMU · SC	Knife-Edge Silicon Carbide & Tungsten Carbide
TNT	JM · JMU · SC	Knife-Edge Tungsten Carbide & Tungsten Carbide
ST	JM · JMU · SC	Silicon Carbide & Tungsten Carbide
TNS	JM · JMU · SC	Knife-Edge Tungsten Carbide & Silicon Carbide
TS	JM · JMU · SC	Tungsten Carbide & Silicon Carbide
СТ	JM • JMU	Carbon&Tungsten Carbide
CS	JM · JMU	Carbon&Silicon Carbide

5 Mate	rial of O-ring		6	Connection	
Mark	Materia	l	i i	Mark	Contents
No Ma	rk NBR			D	DIN11851
VT	FKM		Ī	SM	SMS
EP	EPDM		-	DF	DIN Flange
SI	Silicone			тс	Tri Clamp
к	Kalrez		-	С	IDF Clamp
Y	PTFE			F	JIS Flange
			-	Z+Connection Mark	Different Port Size
				Further Connection	on Type on Request

(7)	Installa	tion Option
	Mark	
		Special Option (e.g.)
		-SUS316L(Wetted Materials)
		-SUS316/(Botors)

	-SUSSIDE(Wetted Materials)
	-SUS316/(Rotors)
	-Electrical Polish
7	-Roughness of Surface (Ra≦0.8)
2	-Left Thread Shaft
	-Umbrella Rotors (e.g. Chocolate, Paste)
	-Special Material for Sleeve (Titanium Coating)%JO
	-Nickel Coating for Housing
	Further Options on Request
CW	-For transport cold cream. Churning prevention type
3A	-3A Approved %JM,JMU Series
EH	-EHEDG Approved %JMU Series Only
EX	-ATEX Approved %QJMU,WJMU Series

Contents Series Only

One-step Manufacturing System

Consult

Nakakin proposes semi custom made products that meet customers specifications and requests. Nakakin offers not only the pump functions that best fit customers' products but also parts, materials and colors to suit customers' preferences.

Manufacturing

Having started as a foundry, Nakakin uses casting know-how to manage consistent manufacturing from parts production to product assembly. Nakakin is proud of its, highly skilled artisans and technicians, capable of precision adjustment and assembly. This precision can not be achieved using machinery.

Quality Control

Nakakin products undergo as many as 100 inspection items and the tests are particular to the specifications of each pump. Only those pumps passing our stringent inspection and tests are delivered to customers This ensures high performance and customer satisfac-

tion

Nakakin tailors its delivery and shipping to meet individual customer requirement. Nakakin offers a complete support system, supplying customer with consumable parts, maintenance and troubleshooting.

Operating Principle

When rotor A and rotor B rotate, the capacity of space (c) between the vane A1 and vane B1 increases to generate high vacuum. This high vacuum draws the liquid into the pump casing through the inlet. At the outlet, vane B2 and vane A1 meet to decrease the capacity of the space. This creates pressure to discharge the liquid through the outlet

With the two rotors in this position, the capacity of space (c) becomes the smallest. The pump returns to step to repeat the pumping cycle again

Space (c) filled with the liquid is moving towards the outlet. When the capacity of space (e) is the smallest in step \bigcirc , it increases the capacity as the two meeting vanes separate, to generate a high vacuum which in turn pulls the liquid through the inlet.

When vane B1 and vane A2 meet, the capacity of space (c) decreases to generate pressure. This causes the liquid to be pumped out through the outlet. The capacity of space (d) increases when the two rotors rotate to separate the two vanes. This creates a vacuum to pull the liquid in

CIP JET Function

process

disassembling.

buildup.

liquid degradation.

- area) and the outlet (high pressure area).
- low pressure area (inlet) through the CIP JET holes and slits.
- liquid at the low pressure area.

Advantages

The automatic pressure regulation protects the pump from failure and mechanical problems.

Operating Principles

The "spring" and "piston" of the vented packing normally send pressure towards the portions of the pump that are in contact with the liquid.

When the pressure inside the pump (or portions in contact with the liquid) becomes higher than the pressure exerted by the spring, the pressure difference pushes the vented packing up in the opposite direction from the portions in contact with the liquid. This causes the liquid to reverse its flow through bypasses A and B, suppressing the pressure increase inside the pump (portions in contact with the liquid).

36

Company Profile

1 Hirakata Plant

2 Kasuga Plant

3 Head Office

5 Tokyo Office

Europe Office

Japan Nakakin Co., Ltd.

2-10-5 Kasuga Kitamachi Hirakata Osaka 573-0137 Japan

Phone number: +81-72-859-8948 Fax number: +81-72-858-5504

Indonesia P.T. Nakakin Indonesia

Ejip Industrial Park Plot 5L-4/5/6 Kelurahan Sukaresmi Kec Cikarang Selatan Bekasi Indonesia

Phone number: +62-21-897-0401 Fax number: +62-21-897-0402

Thailand Nakakin Co., Ltd. Bangkok Office

33/73-74, Wall Street Tower Bldg., 15th fl., Surawong rd., Suriyawong, Bangrak Bangkok 10500 Thailand

Phone number: +66-2-632-8900 Fax number: +66-2-632-8628

Inquiry Sheet for Nakakin Pump

Company	
Name	
Tel	E-mail
Pump Spec Dump Unit(Pump+Motor	r) 🗌 Pump Only
Liquid Products	
Viscosity mPa·s (CP)	Temperature
Slurry □ No □ Include(mm)	Particles 🗆 No 🗆 Include(
Capacity	
Suction pressure	m,mmHg Specific gravity
Discharge pressure	
□ Cleaning Out of Place □ CIP·SIP (°	C) Working Hr.
Pump model	
Inlet port size	Outlet port size
Connection SMS DIF	Clamp ☐ IDF Union I 11851 ☐ Tri Clamp
Pump revolution	
□ Mechanical Seal Type □ O-Ring Sea	il Type
□ C&C □ T&T □ S&S □ T2 □ .	TR 🗆 SNT
□ NBR □ EPDM □ FKM □ Silicone	e 🗌 Kalrez 🗌 PTFE
MOTOR	
Manufacturer	IORD 🗆 SEW 🗆 Sumitomo 🛛
Model Indoor Outdoor Explosion Proof eG3 d	2G4
Power	kw at 4 pole
Voltage □ 200 □ 220 V □ 50 □	60 Hz at 3 phase
Motor Revolution	rpm [
Revolution Range	Hz
WEIGHT PUMP- kg U	Init-weight kg C
·	· · · · ·

	DATE :	
	NAKAKIN REF NO.	
	SERIAL NO.	
SET(S)	NOTE	~
	ουτ	
°C		
L/Hr	IN	
MPa(G)		OUT
Hr./DAY		OUT
	MAII	
	Casing	SCS14 🗆 lacket
	Casing Cover	SCS14 🗆 Jacket
rpm	Nut	SUS316
	Shaft	SUS329J1
	Rotor	NAKAMURA-METAL NO.3
	Common Base Plate	□ SUS304 □ SS400
	Common Base Plate	SORY
Inverter Mo	Common Base Plate ACCESS Detor Fixed Geared Mo	SUS304 SS400
Inverter Ma Adjust Boli	Common Base Plate ACCESS Detor Fixed Geared Mc Caster	SUS304 SS400 SORY otor Variable Speed Changer
Inverter Ma Adjust Boli Motor Cov	Common Base Plate ACCESS Dotor Fixed Geared Mc t Caster er	SUS304 SS400 SORY otor Variable Speed Changer
Inverter Ma Adjust Boli Motor Cov Spare Part:	Common Base Plate ACCESS Detor Fixed Geared Mod t Caster er s	□ SUS304 □ SS400 SORY Detor □ Variable Speed Changer
Inverter Ma Adjust Bolt Motor Cov Spare Part:	Common Base Plate ACCESS Dotor Fixed Geared Mod t Caster er s	□ SUS304 □ SS400 SORY ator □ Variable Speed Changer
Inverter Mo Adjust Boli Motor Cov Spare Part:	Common Base Plate ACCESS Dotor Fixed Geared Mod t Caster er s	SORY SORY
Inverter Ma Adjust Boli Motor Cov Spare Part:	Common Base Plate ACCESS Dotor Fixed Geared Mod t Caster er s Maker Standard Othe	□ SUS304 □ SS400 SORY ator □ Variable Speed Changer United Stress ()
Inverter Ma Adjust Boli Motor Cov Spare Part: DLOR:	Common Base Plate ACCESS Dotor Fixed Geared Mod t Caster er S Maker Standard Othe	SORY SORY btor □ Variable Speed Changer ers()
Inverter Ma Adjust Bolt Motor Cov Spare Part:	Common Base Plate ACCESS otor Fixed Geared Mo Caster er s Maker Standard Othe	SORY
Inverter Ma Adjust Bolt Motor Cov Spare Part:	Common Base Plate ACCESS otor Fixed Geared Mc t Caster er s Maker Standard Othe	□ SUS304 □ SS400 SORY Notor □ Variable Speed Changer Pers()
Inverter Ma Adjust Bolt Motor Cov Spare Part:	Common Base Plate ACCESS otor Fixed Geared Mo t Caster er s Maker Standard Othe	SORY SORY
Inverter Ma Adjust Bolt Motor Cov Spare Part:	Common Base Plate ACCESS otor Fixed Geared Mo t Caster er Maker Standard Othe	□ SUS304 □ SS400 SORY ator □ Variable Speed Changer ers()
Inverter Ma Adjust Bolt Motor Cov Spare Part:	Common Base Plate ACCESS otor Fixed Geared Mo Caster er S Maker Standard Othe	□ SUS304 □ SS400 SORY ator □ Variable Speed Changer Pers()
Inverter Ma Adjust Bolt Motor Cov Spare Part:	Common Base Plate ACCESS otor Fixed Geared Mo t Caster er s Maker Standard Othe	□ SUS304 □ SS400
Inverter Ma Adjust Bolt Motor Cov Spare Part:	Common Base Plate ACCESS otor Fixed Geared Mc t Caster er Maker Standard Othe	□ SUS304 □ SS400 SORY Notor □ Variable Speed Changer Pers()
Inverter Ma Adjust Bolt Motor Cov Spare Part:	Common Base Plate ACCESS otor Fixed Geared Mo t Caster er Maker Standard Othe	□ SUS304 □ SS400
Inverter Ma Adjust Bolt Motor Cov Spare Part:	Common Base Plate ACCESS otor Fixed Geared Mo Caster er S Maker Standard Othe	□ SUS304 □ SS400 SORY ator □ Variable Speed Changer ers()